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We extend earlier work on the nonlinear behavior of premixed flames in a gravitationally stratified medium,
subject to the Boussinesq approximation, in two dimensions. The main result is that the nature of the traveling
burning front is largely determined by the form of the adopted boundary conditions on the side walls: while
symmetric boundary conditions lead to stably scalloped traveling wave solutions, loss of symmetry leads to the
development of pulsating fronts. However, despite differences in geometrical features, the symmetric and
asymmetric systems obey the same scaling behavior for the average effective flame speed.
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The Boussinesq model is the simplest system exhibiting
buoyancy effects without introducing the complexities asso-
ciated with the presence of sound waves and gravitational
stratification of the ambient medium. In our earlier article
�1�, we have studied flames in the Boussinesq limit in a
two-dimensional Rayleigh-Taylor configuration �see also
�2��. The heavier reactant was placed on top of the lighter
product, with the interface between the reactant and the prod-
uct slightly perturbed. The reaction front becomes Rayleigh-
Taylor unstable, increasing the length of the interface and,
consequently, the bulk burning rate. Eventually the front sta-
bilizes in a “scalloped” shape, which propagates as a two-
dimensional traveling wave. The shape of the interface and
the traveling wave speed are determined by the maximum
allowable wavelength and, in the limit of large wavelengths,
are independent of the laminar flame speed.

The focus of �1� was on a comparison with classic single-
mode Landau-Darrieus and Rayleigh-Taylor instabilities, and
with the recent analytical results presented in �3�. We ex-
tended this study to systems with a multimode initial pertur-
bation in �4�, which required two modifications in the nu-
merical setup. First, to initiate wrinkling of a planar
interface, we added noise to the reaction rate. The noise did
not influence the shape and the traveling wave speed of pre-
viously obtained scalloped solutions. Second, instead of con-
sidering half-wavelength computational domains with reflec-
tion boundary conditions at the vertical walls, we
implemented periodic boundary conditions in the horizontal
direction. To our surprise, the same calculations repeated in
the one-wavelength domain �but with periodic boundary con-
ditions� produce solutions with a very different character:
instead of traveling waves, we now observe pulsating fronts.
The difference in the nature of the solutions is apparently a
result of the less restrictive conditions imposed on the trans-
verse �horizontal� velocity.

The purpose of this report is to focus on the effects of
boundary conditions in determining the asymptotic nature of
the flame solutions. As the present work is an extension of
�1�, we discuss the results immediately after a short descrip-

tion of the model, and refer the reader to �1� for the details of
the numerical method.

The Boussinesq model for combustion corresponds to the
limit of an infinitely small density difference between burned
and unburned states. The flow is assumed to be incompress-
ible; the fluid crossing the interface does not undergo thermal
expansion; and the reaction does not directly affect the ve-
locity. A planar reaction front propagating with constant
speed in a motionless fluid is a valid solution in a Boussinesq
system. The scalar variable describing the reaction progress
can be interpreted as temperature, scaled between zero and
one, 0�T�1. In the same spirit, we refer to a planar reac-
tion front propagating in motionless fluid as a laminar flame.

The evolution of the temperature is described by an
advection-reaction-diffusion equation, which is coupled to
the fluid motion through the advection velocity. The fluid
velocity obeys the incompressible Navier-Stokes equation
with a temperature-dependent force term, f= �̄g�1−2AT�.
Here, g is the gravitational acceleration, �̄ is the �constant�
average density, and A��� /2�̄ is the Atwood number.

The governing equations are the 2D incompressible
Navier-Stokes equation expressed in the vorticity formula-
tion �����v=−�2�� and the advection-reaction-diffusion
equation for the temperature:
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Where, 	 is the thermal diffusivity, � is the kinematic vis-
cosity, 
 is the reaction timescale, and g is the absolute value
of the gravitational acceleration �which is assumed to be ver-
tical�. Note that the Atwood number and the gravitational
acceleration appear only in the algebraic combination Ag for
a Boussinesq system.

The reaction rate, R�T�, is typically some simple function
of the temperature; however here we add a stochastic com-
ponent, i.e.,
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R�T� =
1

4
T�1 − T��1 + �r�x,t�� , �3�

where ��1 is the amplitude of the noise. The function r�x , t�
represents white noise; in our implementation r is a number
chosen randomly within the interval �−1,1� every time the
reaction rate is computed. When �=0, the reaction rate re-
duces to the form used in �1�. As we show below, scalloped
solutions are stable in systems with reflection boundary con-
ditions and are metastable in systems with periodic boundary
conditions. We use noise in reaction rate �3� to verify the
stability in the first case and, in the second case, to reduce the
time spent by the system in the metastable state �i.e., to
speed up the calculations�.

The thermal diffusivity and reaction time scale determine
the laminar flame speed s0=�	 /
 and the length scale 

=�	
. Because we use a diffuse representation of the flame,
the reaction front has a finite thickness, of the order of 
.
There is no universally accepted definition for the flame
thickness; one possibility is to define it as a distance between
two level sets, for example T=0.1 and T=0.9. Measured this
way, the laminar flame thickness was found to be �18
.

Our system is characterized by three nondimensional pa-
rameters: the Prandtl number, Pr�� /	, the ratio of the per-
turbation wavelength to the flame length scale, L� l /
, and
the nondimensionalized gravity, G�2Ag
 /s0

2.
The case when L�1, called the thin flame limit, is of

special interest. In this limit the system behavior is deter-
mined by fluid flow on the large scales and is independent of
choice of reaction R�T�. In the Boussinesq case discussed in
�1�, the speed and the shape of the traveling wave in the thin
front limit depend only on the product LG. The LG product
can be interpreted as the inverse square of the Froude num-
ber, LG=Fr−2=2Agl /s0

2, where the Froude number is defined
as the ratio of the laminar flame speed to the Rayleigh-Taylor
velocity.

The initial conditions for most of our calculations are
comprised of a quiescent velocity field �hydrostatic equilib-
rium� and an initially planar horizontal interface separating
the unburned fluid above from the burned fluid below. A
level of noise given by �=10−2 is used in most of the simu-
lations.

We performed simulations in two kinds of computational
domains—a vertical channel of width l /2 with horizontally
reflecting boundary conditions, and a vertical channel of
width l with horizontally-periodic boundary conditions. For
reflection boundary conditions the results are the same as
obtained without noise in �1�: the system develops a stable,
scalloped flame, propagating as a traveling wave. The system
with periodic boundary conditions instead develops a pulsat-
ing front �Fig. 1�.

The early development of a pulsating front looks very
similar to the early development of a traveling wave. Indeed,
by reducing the amount of noise we were able to observe
traveling waves in the periodic system as well. However,
these solutions do not represent the asymptotic behavior. The
front maintains its scalloped shape only for a finite period of
time �which could be substantial, when measured in units of
the flame crossing time�. Eventually the solution loses its

symmetry and begins to pulsate; these pulsations subse-
quently persist. Thus, the scalloped solutions which are
stable in the systems with reflection boundary conditions ap-
pear to be metastable in systems with periodic boundary con-
ditions.

The final, time-dependent behavior is asymptotic in the
time-averaged sense, and is independent of the level of noise
and the initial shape of the interface. Further on, we focus on
the properties of this asymptotic state for the both systems,
with periodic and reflection boundaries.

The difference between traveling waves and pulsating
fronts originates in the vorticity distribution near and behind
the flame front. As one can see from Eq. �1�, vorticity is
generated by the temperature gradients, e.g., at the flame
interface. The sign of vorticity generated depends on the
slope of the interface: positive vorticity is produced on the
left sides of flame fingers, and negative on the right sides
�see vorticity images in Fig. 1�. The vorticity created at the
flame front is advected into the burned material at the cusps,
and ultimately dissipated well behind the flame front.

Reflective boundary conditions prohibit transverse hori-
zontal velocities at the domain boundaries. The boundaries
then act as separatrices between regions of positive and
negative vorticity; and annihilation of vorticity of opposite
signs occurs only as a result of viscous dissipation at the
separatrices. Hence, the vorticity distribution takes the form
of long vertical stripes, slowly fading out as one moves away

FIG. 1. �Color online�. Panels A and B: the temporal develop-
ment of the level set T=0.5, displayed at successive times separated
by time intervals �t=25
; panel A pertains to the case of reflecting
boundary condition �the actual domain is replicated four times�,
while panel B pertains to the case of periodic boundary conditions
�the domain is replicated twice�. Panels C–F: the temperature dis-
tribution and velocity streamlines �panels C and E� and the vorticity
distribution �panels D and F� at time t=900
 for same two cases.
Simulation parameters: L=64,G=1, and Pr=1.
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�e.g., down� from the flame interface. Correspondingly, the
velocity field consists of pairs of horizontal counter-rotating
rolls that are elongated in the vertical direction. Because of
this elongation, the flow along the separatrices can be re-
garded as a shear flow along the vertical direction.

In contrast, if the boundary conditions are periodic, trans-
verse velocities at the boundaries are allowed. As a conse-
quence, a horizontal shear flow can, and does, develop. This
shear distorts the reaction front; the vorticity is deposited in
an asymmetric pattern, which leads to horizontal stripes of
alternating positive and negative vorticity in the wake of the
propagating flame front. The vertical component of the ve-
locity is dissipated by diffusion behind the burning front,
resulting in layers of oppositely signed vorticity. These lay-
ers are stationary and regularly spaced, and are characterized
by a vertical wavelength � discussed further below. The lay-
ers interact with one another only through diffusion, and
eventually dissipate well behind the flame front.

The frequency of pulsations depends on gravity G and
horizontal wavelength L, but the vertical wavelength �,
which is a ratio of the average flame speed to the frequency,
is surprisingly invariant. We measured � for a wide range of
parameters and various initial conditions, and found that the
ratio of the vertical to horizontal wavelengths is roughly con-
stant �Fig. 2�. However, the uncertainty in this measurement
remains relatively large, and a slight dependence on control
parameters cannot be ruled out. The results for different
Prandtl numbers are not shown in Fig. 2, but they follow the
same trend �no significant dependence of � on Prandtl num-
ber�.

In spite of the dramatic differences in geometrical and
temporal features of the underlying flows, the two classes of
solutions �steady scalloped fronts and pulsating fronts� have
similar mechanisms of vorticity dissipation behind the flame.
In both cases, vorticity decay is dominated by high fre-
quency modes �� /�=−�k2�t, where k=kx=2� / l for verti-
cal shear, and k=ky =2� /� for horizontal shear. We can also
estimate the decay rate of vorticity by assuming exponential

decay on a length scale hV, e.g., �� /�=�y /hV, where the
displacement �y equals to the shift of the solution during the
time interval, �y=s�t, where s is the traveling wave speed.
We thereby estimate the vorticity dissipation length scale

hV =
s

�k2 . �4�

To summarize, the vorticity well behind the flame can be
approximated by the expression,

� = �0 cos�k · x�e�y−st�/hV, �5�

with k= �2� / l ,0� for the vertical shear, and k= �0,2� /�� for
the horizontal shear, cases. Although Eq. �5� does not exactly
satisfy Eq. �1�, it does demonstrate excellent agreement with
our numerical results; we indicate this agreement in Fig. 3 by
comparing the horizontally averaged computed vorticity and
the vorticity dissipation rate, as estimated by using Eqs. �4�
and �5�. Note that the vorticity dissipation length scale is a
function of the effective flame speed, which in turn is a func-
tion of gravity.

Finally, we discuss the relationship between flame mor-
phology and the effective flame speed. In a similar two-
dimensional numerical setup, Bayliss et al. �2� observed
flame behavior ranging, as the effective flame speed in-
creases, from planar flames, to steady scalloped flames, to
pulsating fronts, and finally, to chaotic flames.

The transition between planar and scalloped flames occurs
when the gravity parameter exceeds some critical value,
Gcr=Gcr�L�. For values of G below critical, the scalloped
solution does not exist, and the traveling wave has a planar
interface moving with the laminar flame speed s0. For values
of G above critical, Pr=1, and reflective boundary condi-
tions, we observed the scaling

FIG. 2. Variation of the wavelength � of horizontal shear vs the
LG product in simulations with periodic boundary conditions for
Pr=1 and three values of L. The striking result is the insensitivity of
this shear scale to the LG product, which is otherwise a key control
parameter for this problem.

FIG. 3. Absolute value of the nondimensionalized, horizontally
averaged vorticity as a function of height for a system with L
=64,G=1, and Pr=1, with periodic boundary condition �solid� and
with reflection boundary conditions �dashed�. The slopes of the two
dotted lines correspond to the vorticity dissipation rate computed
using Eq. �4� with average flame speed s /s0=1.900 and s /s0

=1.859, respectively, and � / l=1.45.
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s = s0
�1 + �L�G − Gcr� , �6�

where ��0.0486 is constant �1�.
When we consider periodic boundary conditions, we find

that the time dependence and symmetry properties of the
flame have no influence on the transitional behavior and on
the flame speed for values of gravity below and moderately
above critical �Fig. 4�. Inspection of the flame front reveals
that the flow at the flame tips resembles the counter-rotating
vortices typical for a rising bubble and seen in the scalloped
front regime. Since the front is only slightly curved for small
values of LG, the horizontal shear either develops below the
flame brush �for large values of L� or is weakened by dissi-
pation �for small values of L�. In both cases, the shear dis-
torts the flame front in the lower, mostly burned layer of the

flame brush, leaving the tips unaffected �Fig. 1�. This regime
can be interpreted as a stable scalloped front in �2�.

As the LG product increases, the influence of periodic
boundary conditions on flame morphology becomes more
noticeable. Underlying shear bends the flame fingers closer
to the tips, the interface area shrinks and extends periodi-
cally, and the flame speed begins to oscillate, i.e., the flame
front pulsates.

With further increase of LG, the oscillation pattern be-
comes more complicated and takes longer to settle down to a
coherent pulsating state, suggesting a possible transition to
chaotic flames as described in �2�.

However the boundary conditions and complicated flame
front behavior do not affect the average flame speed for suf-
ficiently large values of L. Expression �6� was obtained for a
thin flame regime, which requires not only L�1, e.g., a thin
laminar flame, but also small flame thickness when the flame
is distorted by the flow. The vertical shear flow better pre-
serves the structure of long vertical channels of unburned
fluid near the separatrices where significant fraction of the
burning occurs, while horizontal shear flow is more likely to
destroy those channels. As a result, the flame speed for LG
�1 and G�1 is lower than suggested by Eq. �6� in a system
with periodic boundary conditions.

Note that in the large LG limit the effective flame speed
does not depend on a laminar flame speed, s�s0

�LG
=�2Agl. This has been observed in both numerical simula-
tions and in experiments of flames rising in tubes �see re-
view, �5��, as well as in fully compressible simulations using
periodic boundary conditions both in two and three dimen-
sions �6,7�. Indeed, flames in tubes develop traveling wave
solutions with smooth fronts, while flames in periodic sys-
tems develop complicated nonstationary interfaces �5�.
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FIG. 4. Average flame speed to laminar flame speed ratio as a
function of the LG product, for L=32, L=64, L=128, and Pr=1, for
a system with reflecting boundary conditions �open symbols� and
with periodic boundary conditions �crosses�. The dashed curve cor-
responds to Eq. �6�
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